Optimal Algorithm for Finding DNA Motifs with Nucleotide Adjacent Dependency
نویسندگان
چکیده
Finding motifs and the corresponding binding sites is a critical and challenging problem in studying the process of gene expression. String and matrix representations are two popular models to represent a motif. However, both representations share an important weakness by assuming that the occurrence of a nucleotide in a binding site is independent of other nucleotides. More complicated representations, such as HMM or regular expression, exist that can capture the nucleotide dependency. Unfortunately, these models are not practical (with too many parameters and require many known binding sites). Recently, Chin and Leung introduced the SPSP representation which overcomes the limitations of these complicated models. However, discovering novel motifs in SPSP representation is still a NP-hard problem. In this paper, based on our observations in real binding sites, we propose a simpler model, the Dependency Pattern Sets (DPS) representation, which is simpler than the SPSP model but can still capture the nucleotide dependency. We develop a branch and bound algorithm (DPS-Finder) for finding optimal DPS motifs. Experimental results show that DPS-Finder can discover a length-10 motif from 22 length-500 DNA sequences within a few minutes and the DPS representation has a similar performance as SPSP representation.
منابع مشابه
Utilizing Generalized Learning Automata for Finding Optimal Policies in MMDPs
Multi agent Markov decision processes (MMDPs), as the generalization of Markov decision processes to the multi agent case, have long been used for modeling multi agent system and are used as a suitable framework for Multi agent Reinforcement Learning. In this paper, a generalized learning automata based algorithm for finding optimal policies in MMDP is proposed. In the proposed algorithm, MMDP ...
متن کاملA Pattern Matching Algorithm for Codon Optimization and CpG Motif-Engineering in DNA Expression Vectors
Codon optimization enhances the efficiency of DNA expression vectors used in DNA vaccination and gene therapy by increasing protein expression. Additionally, certain nucleotide motifs have experimentally been shown to be immuno-stimulatory while certain others immuno-suppressive. In this paper, we present algorithms to locate a given set of immuno-modulatory motifs in the DNA expression vectors...
متن کاملDevelopment of an Efficient Hybrid Method for Motif Discovery in DNA Sequences
This work presents a hybrid method for motif discovery in DNA sequences. The proposed method called SPSO-Lk, borrows the concept of Chebyshev polynomials and uses the stochastic local search to improve the performance of the basic PSO algorithm as a motif finder. The Chebyshev polynomial concept encourages us to use a linear combination of previously discovered velocities beyond that proposed b...
متن کاملCodon Optimization for DNA Vaccines and Gene Therapy
Codon optimization enhances the effectiveness of DNA expression vectors used in DNA vaccination and gene therapy by increasing protein expression. Additionally certain nucleotide motifs have experimentally been shown to be immuno-stimulatory while certain others have been shown to be immuno-suppressive. In this paper, we present algorithms to locate all the possible occurrences of a given set o...
متن کاملcWINNOWER Algorithm for Finding Fuzzy DNA Motifs
The cWINNOWER algorithm detects fuzzy motifs in DNA sequences rich in protein-binding signals. A signal is defined as any short nucleotide pattern having up to d mutations differing from a motif of length l. The algorithm finds such motifs if multiple mutated copies of the motif (i.e., the signals) are present in the DNA sequence in sufficient abundance. The cWINNOWER algorithm substantially im...
متن کامل